The amyloid beta ion channel hypothesis of Alzheimer’s disease

نویسندگان

  • Najeeb A Shirwany
  • Daniel Payette
  • Jun Xie
  • Qing Guo
چکیده

Alzheimer's disease (AD) is a leading cause of chronic dementia in the US. Its incidence is increasing with an attendant increase in associated health care costs. Since its first description in a patient by Dr. Alois Alzheimer over a century ago, a large body of biomedical literature has established a detailed clinical and molecular profile of this disorder. Amyloid beta peptide (Abeta; a 39-42 amino acid molecule) is the major component of senile plaques, the lesions that are one of the pathologic hallmarks of AD (Wong et al 1985). Although many aspects of the biology of amyloid beta have been investigated, several fundamental questions about how this peptide causes AD neuropathology remain unanswered. The key question is: How is Abeta toxic to cerebral neurons? Because plaques are extra-neuronal deposits, it is difficult to imagine a structural basis for their toxicity. As an interesting contrast the other pathognomonic feature of AD, neurofibrillary tangles, are intra-axonal structural anomalies that are composed of the hyperphosphorylated microtubule associated (MAP) protein, tau. This review will assess the current thinking that relates to a recent hypothesis of Abeta toxicity. In 1992, Hardy and Higgins reported findings that suggested a new and intriguing possibility. These authors found that Abeta peptides disrupt Ca(2+) homeostasis in neurons and increase intracellular Ca(2+) [Ca(2+)](i). This was corroborated by Mattson and his colleagues who demonstrated that Abeta exposure to human cortical neurons raised [Ca2(+)](i) (Mattson, Cheng et al 1992); (Hardy and Higgins 1992). Finally, Nelson Arispe's group at the NIH specifically investigated the possibility that Abeta peptides might function like Ca(2+) ion channels (Arispe et al 1993). This and several subsequent studies have laid the foundation for a novel idea: "Abeta peptides are, in part, toxic to neurons because they form aberrant ion channels in neuronal membranes and thereby disrupt neuronal homeostasis". In this review we shall critically examine this theory in light of classic and contemporary literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biophysical properties of single potassium channel in the brain mitochondrial inner membrane of male rat with Alzheimer’s disease

Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder, characterized by impairment of memory and changes in behavior and personality. Recent evidence suggests that mitochondrial channels play important roles in memory disorders. Accordingly, the biophysical properties of a single potassium channel were investigated in the brain mitochondrial inner membrane of rat with...

متن کامل

Thymoquinone recovers learning function in a rat model of Alzheimer’s disease

Objective: Alzheimer's disease is a neurodegenerative disorder characterized by accumulation of amyloid beta in the hippocampus. In recent decades, herbal medicine has been widely used to treat many neurodegenerative disorders,as in comparison to conventional drugs, herbal remedies exert minimal side effects. Here, the effects of thymoquinone, as the main active component of Nigella sativa, on ...

متن کامل

Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...

متن کامل

نقش گیرنده‌های نیکوتینی استیل کولین، پروتئین کیناز B و پروتئین کیناز Mζ بر اثر حفاظتی اسید رزمارینیک در مدل بیماری آلزایمر القا شده به وسیله‌ی بتا آمیلوئید (35-25) در موش صحرایی

Background and Objective: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and results from the extracellular accumulation of b-amyloid peptides and the resulting neuronal dysfunction. In this study, the role of nicotinic acetylcholine receptors, protein kinase B (PKB) and protein kinase M (PKM) were evaluated in order to examine the mechanism of the protective effe...

متن کامل

P 131: Connection Process Inflammation and Improvement Alzheimer’s Disease

Platelet aggregation beta amyloid main causes inflammation of neurons in Alzheimer’s disease. In fact, creating this inflammation due to inappropriate actions in blood brain barrier (BBB) and astrocyte and microglia during the last century that studies conducted in this case nothing has been found. The only thing that can be done to prevent and reduce pro-inflammatory factors such as cyto...

متن کامل

Ellagic acid attenuates enhanced acetylcholinesterase reactivity in an experimental model of Alzheimer′s disease induced by beta amyloid25-35 in the rat

Background and Objective: Alzheimer’s disease (AD) is a multifactorial disease with debilitating consequences and few therapeutic strategies exist for it. With regard to antioxidant capacity and anti-β-amyloid polymerization potential of ellagic acid, this study was conducted to evaluate the effect of this substance on enhanced acetylcholinesterase reactivity in an experimental model of Alzheim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuropsychiatric Disease and Treatment

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007